Modeling Consumer Decision Making and Discrete Choice …

Download this Presentation

0

Presentation Transcript

  • 1.Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA Models for OrderedChoices http://people.stern.nyu.edu/Econometrics/OrderedChoices.pptx
  • 2.Ordered Discrete Outcomes E.g.: Taste test, credit rating, course grade, preference scale Underlying random preferences: Existence of an underlying continuous preference scale Mapping to observed choices Strength of preferences is reflected in the discrete outcome Censoring and discrete measurement The nature of ordered data
  • 3.Ordered Choices at IMDb
  • 4.
  • 5.
  • 6.
  • 7.This study analyzes ‘self assessed health’ coded 1,2,3,4,5 = very low, low, med, high very high
  • 8.Health Satisfaction (HSAT) Self administered survey: Health Care Satisfaction (0 – 10) Continuous Preference Scale
  • 9.Modeling Ordered Choices Random Utility (allowing a panel data setting) Uit =  + ’xit + it = ait + it Observe outcome j if utility is in region j Probability of outcome = probability of cell Pr[Yit=j] = F(j – ait) - F(j-1 – ait)
  • 10.Ordered Probability Model
  • 11.Combined Outcomes for Health Satisfaction (0,1,2) (3,4,5) (6,7,8) (9) (10)
  • 12.Ordered Probabilities
  • 13.An Ordered Probability Model for Health Satisfaction
  • 14.
  • 15.Analysis of Model Implications Partial Effects Fit Measures Predicted Probabilities Averaged: They match sample proportions. By observation Segments of the sample Related to particular variables
  • 16.Coefficients
  • 17.Partial Effects of 8 Years of Education
  • 18.Ordered Probability Partial Effects ----------------------------------------------------------------------------- Marginal effects for ordered probability model M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] Names for dummy variables are marked by *. --------+-------------------------------------------------------------------- | Partial Prob. 95% Confidence HLTHSAT| Effect Elasticity z |z|>Z* Interval --------+-------------------------------------------------------------------- |--------------[Partial effects on Prob[Y=00] at means]-------------- *FEMALE| -.00117 -.02600 -.38 .7065 -.00726 .00492 EDUC| -.00351*** -.89008 -5.04 .0000 -.00488 -.00215 AGE| .00177*** 1.70456 11.15 .0000 .00146 .00208 INCOME| -.02298** -.17806 -2.37 .0178 -.04199 -.00398 *HHKIDS| -.00472 -.10470 -1.42 .1545 -.01121 .00177 |--------------[Partial effects on Prob[Y=01] at means]-------------- ... |--------------[Partial effects on Prob[Y=02] at means]-------------- ... |--------------[Partial effects on Prob[Y=03] at means]-------------- *FEMALE| .00146 .01323 .38 .7067 -.00614 .00906 EDUC| .00437*** .45292 4.82 .0000 .00259 .00615 AGE| -.00220*** -.86738 -9.36 .0000 -.00266 -.00174 INCOME| .02863** .09061 2.35 .0189 .00473 .05254 *HHKIDS| .00594 .05386 1.40 .1607 -.00236 .01424 |--------------[Partial effects on Prob[Y=04] at means]-------------- *FEMALE| .00192 .02209 .38 .7067 -.00808 .01191 EDUC| .00575*** .75573 5.05 .0000 .00352 .00798 AGE| -.00289*** -1.44727 -11.11 .0000 -.00341 -.00238 INCOME| .03764** .15118 2.37 .0178 .00651 .06878 *HHKIDS| .00786 .09053 1.40 .1618 -.00315 .01888 --------+-------------------------------------------------------------------- z, prob values and confidence intervals are given for the partial effect ***, **, * ==> Significance at 1%, 5%, 10% level.
  • 19.----------------------------------------------------------------------------- Marginal effects for ordered probability model M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] Names for dummy variables are marked by *. [Partial effects on Prob[Y=j] at means] --------+-------------------------------------------------------------------- | Partial Prob. 95% Confidence HLTHSAT| Effect Elasticity z |z|>Z* Interval --------+-------------------------------------------------------------------- *FEMALE| -.00117 -.02600 -.38 .7065 -.00726 .00492 *FEMALE| -.00304 -.01232 -.38 .7066 -.01890 .01281 *FEMALE| .00084 .00164 .38 .7065 -.00352 .00520 *FEMALE| .00146 .01323 .38 .7067 -.00614 .00906 *FEMALE| .00192 .02209 .38 .7067 -.00808 .01191 --------------------------------------------------------------------- Partial Effects Analysis for Ordered Probit Prob[Y =All] Effects on function with respect to FEMALE Results are computed by average over sample observations Partial effects for binary var FEMALE computed by first difference --------------------------------------------------------------------- df/dFEMALE Partial Standard (Delta Method) Effect Error |t| 95% Confidence Interval --------------------------------------------------------------------- APE Prob(y= 0) -.00124 .00329 .38 -.00768 .00521 APE Prob(y= 1) -.00288 .00765 .38 -.01788 .01212 APE Prob(y= 2) .00077 .00204 .38 -.00323 .00477 APE Prob(y= 3) .00138 .00367 .38 -.00581 .00857 APE Prob(y= 4) .00197 .00524 .38 -.00829 .01223 Partial Effects at Means vs. Average Partial Effects
  • 20.Predictions from the Model Related to Age
  • 21.Fit Measures There is no single “dependent variable” to explain. There is no sum of squares or other measure of “variation” to explain. Predictions of the model relate to a set of J+1 probabilities, not a single variable. How to explain fit? Based on the underlying regression Based on the likelihood function Based on prediction of the outcome variable
  • 22.Log Likelihood Based Fit Measures
  • 23.
  • 24.A Somewhat Better Fit
  • 25.Panel Data Fixed Effects The usual incidental parameters problem Partitioning Prob(yit > j|xit) produces estimable binomial logit models. (Find a way to combine multiple estimates of the same β. Random Effects Standard application Extension to random parameters Dynamics Attrition
  • 26.A Study of Health Status in the Presence of Attrition
  • 27.Model for Self Assessed Health British Household Panel Survey (BHPS) Waves 1-8, 1991-1998 Self assessed health on 0,1,2,3,4 scale Sociological and demographic covariates Dynamics – inertia in reporting of top scale Dynamic ordered probit model Balanced panel – analyze dynamics Unbalanced panel – examine attrition
  • 28.Dynamic Ordered Probit Model It would not be appropriate to include hi,t-1 itself in the model as this is a label, not a measure
  • 29.Random Effects Dynamic Ordered Probit Model
  • 30.Data
  • 31.Variable of Interest
  • 32.Dynamics
  • 33.Attrition
  • 34.Testing for Attrition Bias Three variables added to full model with unbalanced panel suggest presence of attrition effects.
  • 35.Estimated Partial Effects by Model
  • 36.Partial Effect for a Category These are 4 dummy variables for state in the previous period. Using first differences, the 0.234 estimated for SAHEX means transition from EXCELLENT in the previous period to GOOD in the previous period, where GOOD is the omitted category. Likewise for the other 3 previous state variables. The margin from ‘POOR’ to ‘GOOD’ was not interesting in the paper. The better margin would have been from EXCELLENT to POOR, which would have (EX,POOR) change from (1,0) to (0,1).
  • 37.Appendix.Ordered Choice Model Extensions
  • 38.Different Normalizations NLOGIT Y = 0,1,…,J, U* = α + β’x + ε One overall constant term, α J-1 “cutpoints;” μ-1 = -∞, μ0 = 0, μ1,… μJ-1, μJ = + ∞ Stata Y = 1,…,J+1, U* = β’x + ε No overall constant, α=0 J “cutpoints;” μ0 = -∞, μ1,… μJ, μJ+1 = + ∞
  • 39.
  • 40.
  • 41.--------+-------------------------------------------------------------------- | Standard Prob. 95% Confidence HLTHSAT| Coefficient Error z |z|>Z* Interval --------+-------------------------------------------------------------------- |Index function for probability...................................... Constant| 1.96417*** .11905 16.50 .0000 1.73084 2.19751 FEMALE| .01223 .03250 .38 .7066 -.05146 .07593 EDUC| .03667*** .00717 5.11 .0000 .02261 .05073 AGE| -.01846*** .00154 -11.98 .0000 -.02148 -.01544 INCOME| .24009** .10103 2.38 .0175 .04208 .43809 HHKIDS| .04975 .03525 1.41 .1582 -.01934 .11884 |Threshold parameters for index...................................... Mu(01)| 1.14847*** .02116 54.28 .0000 1.10700 1.18994 Mu(02)| 2.54775*** .02162 117.86 .0000 2.50539 2.59012 Mu(03)| 3.05625*** .02646 115.50 .0000 3.00439 3.10811 As reported by Stata --------+-------------------------------------------------------------------- |Index function for probability...................................... FEMALE| .01223 .03250 .38 .7066 -.05146 .07593 EDUC| .03667*** .00717 5.11 .0000 .02261 .05073 AGE| -.01846*** .00154 -11.98 .0000 -.02148 -.01544 INCOME| .24009** .10103 2.38 .0175 .04208 .43809 HHKIDS| .04975 .03525 1.41 .1582 -.01934 .11884 |Threshold parameters for index model................................ /Cut(1)| -1.96417*** .11905 -16.50 .0000 -2.19751 -1.73084 /Cut(2)| -.81570*** .11956 -6.82 .0000 -1.05004 -.58136 /Cut(3)| .58358*** .12079 4.83 .0000 .34684 .82033 /Cut(4)| 1.09208*** .12112 9.02 .0000 .85468 1.32947 Hypothesis tests about threshold values are not meaningful.
  • 42.The Incidental Parameters Problem Table 9.1 Monte Carlo Analysis of the Bias of the MLE in Fixed Effects Discrete Choice Models (Means of empirical sampling distributions, N = 1,000 individuals, R = 200 replications)
  • 43.Zero Inflated Ordered Probit
  • 44.Teenage Smoking
  • 45.Inflated Responses in Self-Assessed Health Mark Harris Department of Economics, Curtin University Bruce Hollingsworth Department of Economics, Lancaster University William Greene Stern School of Business, New York University
  • 46.SAH vs. Objective Health Measures Favorable SAH categories seem artificially high.  60% of Australians are either overweight or obese (Dunstan et. al, 2001)  1 in 4 Australians has either diabetes or a condition of impaired glucose metabolism  Over 50% of the population has elevated cholesterol  Over 50% has at least 1 of the “deadly quartet” of health conditions (diabetes, obesity, high blood pressure, high cholestrol)  Nearly 4 out of 5 Australians have 1 or more long term health conditions (National Health Survey, Australian Bureau of Statistics 2006)  Australia ranked #1 in terms of obesity rates Similar results appear to appear for other countries
  • 47.A Two Class Latent Class Model True Reporter Misreporter
  • 48.Mis-reporters choose either good or very good The response is determined by a probit model Y=3 Y=2
  • 49.Y=4 Y=3 Y=2 Y=1 Y=0
  • 50. Observed Mixture of Two Classes
  • 51.Pr(true,y) = Pr(true) * Pr(y | true)
  • 52.
  • 53.
  • 54.General Result